
X-ray scattering study of interface structures in Si-Si1-xGex superlattices grown on vicinal

Si(111) substrates

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys.: Condens. Matter 13 8733

(http://iopscience.iop.org/0953-8984/13/39/302)

Download details:

IP Address: 171.66.16.226

The article was downloaded on 16/05/2010 at 14:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/13/39
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 13 (2001) 8733–8744 PII: S0953-8984(01)23554-1

X-ray scattering study of interface structures in
Si–Si1−xGex superlattices grown on vicinal Si(111)
substrates

Y Yamaguchi1 and H Hashizume2

Materials and Structure Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori,
Yokohama 226-8503, Japan

E-mail: hhashizu@ms.aist-nara.ac.jp

Received 29 March 2001, in final form 17 July 2001
Published 13 September 2001
Online at stacks.iop.org/JPhysCM/13/8733

Abstract
The interface structures of Si–Si1−xGex (x = 0.1, 0.3) superlattices grown on
vicinal Si(111) substrates are determined from grazing-angle x-ray scattering
data. Diffuse intensity distributions in reciprocal space are calculated using
new formulae developed to explicitly take account of the partially correlated
periodic roughness due to the substrate miscut and the step bunching, in
addition to random roughness. The calculated intensity maps well explain
the experimental ones observed from the Si–Si0.9Ge0.1 and Si–Si0.7Ge0.3. The
bunched steps at the substrate Si(111) surface are widely dispersed at the
Si/Si0.7Ge0.3 interfaces, while the bunched step structure is replicated onto the
Si/Si0.9Ge0.1 interfaces. The different step configurations are ascribed to the
three-times greater misfit strain in the Si–Si0.7Ge0.3. The two interfaces have
distinct in-plane terrace/stepped area ratios of ∼3 and 0.35–0.7. The periodic
terrace–step structures are equally well correlated in the two supelattices in
the out-of-plane direction, while the random roughness has smaller correlation
lengths in the Si–Si0.9Ge0.1 than in the Si–Si0.7Ge0.3.

1. Introduction

Controlling interface structures is a key technique in applications of Si–Si1−xGex

heterostructures to optoelectronics and high-speed electronics. Interface roughness scatters
charge carriers and thus plays an important role in the device properties. The lattice-constant
mismatch between Si and Si1−xGex strains thin layers and this strain affects the surface and
interface morphology of the Si–Si1−xGex superlattice depending upon x [1, 2]. The tensile
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and compressive stress fields, induced in the Si and Si1−xGex layers respectively, influence the
configuration of atomic steps at the Si/SiGe interface. It is well known that a Si1−xGex layer
grown on a Si layer shows a rougher surface than a Si layer on a Si1−xGex . Our previous work
[3, 4] demonstrates that a Si–Si0.9Ge0.1 superlattice and a Si–Si0.7Ge0.3 superlattice, grown on
similar vicinal Si(111) substrates, have markedly different terrace–step structures at the layer
interfaces. The three-times greater misfit strain would have promoted a redistribution of the
steps replicated from the substrate surface in the Si–Si0.7Ge0.3. The Si/SiGe interfaces in these
samples include random roughness, in addition to the periodic terrace–step structures due to the
finite miscut angle of the substrate surface, as evidenced by the x-ray data. Each component has
partially correlated structures along the in-plane and out-of-plane directions. X-ray scattering
is a powerful technique to explore buried interface structures with high momentum and real-
space resolutions, but it is a challenge to quantitatively characterize this type of structure. Holý
et al [5] put forward a theory of x-ray scattering for multilayers with stepped interfaces. In this
paper, we present in section 3 a new formulation that explicitly takes into account the random
and periodic components of interface roughness and thus is more appropriate than Holý et al’s
formulation to our Si–Si1−xGex samples. We apply our theory in section 4 to high-resolution
x-ray diffuse scattering data collected at a synchrotron source. This paper starts by describing
the x-ray experiment in section 2.

2. Experiment and results

The [Si–Si0.9Ge0.1]10 and [Si–Si0.7Ge0.3]10 superlattice samples investigated have previously
been described [3, 4]. Briefly, they have Si and Si1−xGex layers of a nearly equal nominal
thickness of 5 nm, grown by solid-source molecular-beam epitaxy (MBE) on vicinal Si(111)
substrates at 500 ◦C. The growth rate is 0.1 nm s−1 for the Si and Si1−xGex layers. The
first grown layer is Si1−xGex and a Si layer terminates the superlattice. The substrate
surface in each sample is misoriented by 0.6◦ from the (111) plane in a direction 10◦ off
the [211]. The superlattices with Ge contents x = 0.1 and x = 0.3 are called sample 1 and
sample 2 respectively, as in [4]. We carried out x-ray experiments on two bending-magnet
beamlines at the 2.5 GeV synchrotron source of the Photon Factory, KEK, Tsukuba, Japan:
beamline 4C for sample 1 and beamline 20B for sample 2. Each line is equipped with a
focusing mirror and a Si(111) double-crystal monochromator. The x-ray wavelengths used
differ slightly: λ = 0.13 nm on BL-4C and λ = 0.17 nm on BL-20B. On BL-4C, a slit-
limited 1 (horizontal)×0.17 (vertical) mm2 beam illuminated a sample on a Huber four-circle
goniometer. On BL-20B, the probing beam was 4 (horizontal) × 0.1 (vertical) mm2 in size
and a sample was mounted on the two-axis diffractometer BIGDIFF [6]. Slits were used for
the analyser to achieve a geometrical resolution of �Q‖ = 3.0×10−5–7.5×10−4 nm−1 in the
dispersion plane and �Q⊥ = 8.4 × 10−3 nm−1 in the perpendicular direction on BL-4C. The
resolution was�Q‖ = 1.6×10−5–3.9×10−4 nm−1 and�Q⊥ = 4.4×10−3 nm−1 on BL-20B.
The different experimental conditions on the two beamlines are unimportant in the discussion
that follows. Three types of scan were carried out: (1) specular scans with θ1 = θ2, (2) offset
specular scans with a constant off-specular angle �θ = 0.05◦ on a sample (θ1 �= θ2), and
(3) sample rocking scans with fixed detector angles 2θ . Here θ1 and θ2 are the angles that the
incoming and outgoing x-ray beams make to the sample surface, respectively (θ1 + θ2 = 2θ ).
We define the x, y, z coordinates fixed to the sample surface (figure 1), and denote qx , qy , qz

the x, y, z components of the scattering vector q, respectively. The x axis is parallel to the
mean surface and is directed along the substrate miscut direction. The specular scan explores
reciprocal space along the qz axis parallel to the surface normal at qx = 0 or qy = 0, while
the offset specular scan traces a radial line inclined from the qz axis by �θ . Tracks of the
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rocking scans are nearly parallel to the qx or qy axes. We collected x-ray data in two azimuthal
orientations of a sample. In configuration A, the dispersion plane is parallel to the substrate
miscut direction, whereas it is perpendicular to the miscut direction in configuration B. This
allows us to map the diffuse intensity in the (qx, qz) plane and the (qy, qz) plane in reciprocal
space. Rocking scans in configurations A and B are called qx scans and qy scans, respectively.

', yy

z'z

'x

x

interfacevicinal

α

plane)111(

Figure 1. Definition of the coordinate systems. The x, y, z axes are defined by the mean sample
surface, while the x′, y′, z′ axes are parallel to the crystallographic directions. α is the angle
between the terrace levels and the mean surface.

Figure 2. Observed (dots) and calculated (curves) specular (1), (2) and off-specular (3), (4)
reflectivity profiles. Curves (1) and (3) are for sample 1, curves (2) and (4) for sample 2. The
off-specular scans are offset along the qx direction. The curves are arbitrarily shifted in the vertical
direction for clarity.
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Figure 2 shows the results of the specular scans and the offset specular scans for the two
samples. The offset angle �θ = 0.05◦ used is large enough to exclude the specular intensity.
Even-order superlattice Bragg peaks are small because of the nearly equal thicknesses of the
pure Si layers and the alloy Si1−xGex layers. The global decay rate of specular intensity is
similar in samples 1 and 2, suggesting similar interface roughness in the two samples. The
strong Bragg-like peaks seen in the offset specular profiles indicate the significant correlation
of the interface roughness in the out-of-plane direction [7]. Figure 3 shows the typical qx-scan
and qy-scan profiles observed around the third-order superlattice Bragg peaks (qz = 2.2 nm−1)
for sample 1 (figure 3(a)) and sample 2 (figure 3(b)). Beside the specular peaks at qx = 0
or qy = 0 and the Yoneda peaks at the extremities of each scan, pronounced diffuse peaks
(indicated by thick arrows) are observed on several scans. The separations of these peaks in the
qx profiles give the in-plane repeat periods of regular structures at the Si/Si1−xGex interfaces:
Lx = 380 nm for sample 1 and Lx = 1.1 µm for sample 2. As the atomic-force-microscopy
(AFM) trace in figure 4 indicates, the interface morphology consists of long periodic structures
and short random corrugations. The periodic component arises from bunched step structures
[4] and Lx corresponds to the mean period of these structures. The formula n = Lxα/hs

gives n = 13 for sample 1 and n = 39 for sample 2, where α is the miscut angle, hs is the
elementary step height, and n is the mean step number contained in Lx . In the qx profiles for
sample 1 (figure 3(a)), diffuse peaks are symmetrically located with respect to qx = 0, with
distinct heights in the +qx and −qx regions. A similar but much less pronounced feature is
observed in sample 2 (figure 3(b)). On the qy scans, on the other hand, no marked diffuse peak
is seen in sample 2, but small diffuse peaks are observed in sample 1. The latter is supposed
to arise from meandering step lines along the y direction.

The asymmetric diffuse intensity distribution is more clearly seen in the grey-scale maps
of figure 5, which covers smaller (qx , qz) and (qy , qz) areas around the third-order Bragg peaks
than figure 3; figures 5(a) and 5(b) are for sample 1 and sample 2, respectively. The skew
‘smile’ contours of diffuse intensity seen in figure 5(a) indicate that the roughness structures of
the different Si/Si0.9Ge0.1 interfaces in sample 1 are correlated along a direction off the surface
normal (figure 6).

3. Theory of x-ray diffuse scattering

We assume that the regularly stacked Si and Si1−xGex layers are uniform in electron density
with abrupt, rough interfaces between them. In this case, x-ray diffuse scattering from a
superlattice is dictated by the Fourier transform C̃(qx, qy, qz) of the height–height correlation
function C(x, y, z) describing the interface morphology. C̃(qx, qy, qz) is called power spectral
density function. Since the instrument angular resolution integrates the scattering intensity in
the direction perpendicular to the dispersion plane, we are only interested in C̃(qx, qz) and
C̃(qy, qz). We discuss C̃(qx, qz) first. For the local height zj (x) of interface j at point x, we
write

zj (x) = z
p
j (x) + zr

j (x) (1)

where z
p
j (x) and zr

j (x) are the periodic and random components, respectively (figure 4).
Correspondingly, the in-plane correlation function for interface j is given by

Cjj (x, z) = C
p
jj (x, z) + Cr

jj (x) (2)

where C
p
jj (x, z) and Cr

jj (x) are the in-plane correlation functions for the periodic and random
roughnesses, respectively. There would be no correlation between the two types of roughness.
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Figure 3. Observed (dots) and calculated (curves) transverse-scan profiles around the third-order
superlattice Bragg peaks, (a) for sample 1 and (b) for sample 2. The scattering plane is parallel
(left-hand panels) and perpendicular (right-hand panels) to the miscut direction of the substrate
surface. The subsidiary peaks are marked by thick arrows on both sides of the specular peaks
at qx = 0 or qy = 0. Scans cutting through the third-order Bragg peaks are indicated by fine,
horizontal arrows. The qz coverage is 1.69–2.95 nm−1 in the upper-left panel, 1.69–3.21 nm−1 in
the upper-right panel, 1.36–2.88 nm−1 in the bottom-left panel, and 1.26–2.85 nm−1 in the bottom
right panel. Curves are arbitrarily shifted in the vertical direction in each panel.

Cr
jj (x) is defined by

Cr
jj (x) = 〈zr

j (x
′)zr

j (x
′ + x)〉 (3)

which is the two-point height-height correlation for separation x. The self-affine fractal model
of random roughness gives [8]

Cr
jj (X) = (σ r

j )
2 exp[−(x/ξ r

x)
2hH ] (4)

where (σ r
j )

2 is the mean-square roughness 〈|zr
j (x)|2〉, ξ r

x is the in-plane cutoff length of random
roughness along the x direction and hH is the Hurst parameter. For the periodic roughness, we
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Figure 4. AFM trace along the miscut direction of sample 1 (a) and the scheme defining periodic
z
p

j (x) and random zrj (x) roughness component (b).

assume

C
p
jj (x, z) = (σ

p
j )

2Sjj (x, z) (5)

where (σ
p
j )

2 = 〈|zp
j (x)|2〉 and Sjj (x, z) is the probability with which we find a pair of points

separated by (x, z) on interface j . Vicinal Si(111) surfaces often show bunched-step structures,
with heavily stepped areas separated by relatively flat terraces parallel to the (111) plane
[4, 9, 10]. For ideal vicinal interfaces with an identical step-terrace structure repeating with
period Lx , we may write

C
p
jj (x, z) = (σ

p
j )

2Sjj (x, z) ⊗ δ(x − nLx) (6)

where ⊗ stands for convolution and δ(x) is a δ function. Pukite et al [11] gave

S̃jj (qx ′ , qz′) = 2

q2
x ′ l

Re

[
(1 − P̃ (qx ′))(1 − H̃ (qz′))

1 − P̃ (qx ′)H̃ (qz′)

]
(7)

where l is the mean terrace width and P̃ (qx ′) and H̃ (qz′) are the Fourier transforms of P(l) and
H(h), respectively. Here P(l) is the function describing the statistical distribution of terrace
width l, whereas H(h) represents the distribution of step height h. The (x ′, z′) coordinate is
defined in figure 1, where the x ′ and z′ axes are parallel and normal to the terraces, respectively.
The x ′ axis is along the miscut direction, making angle α to the x axis. qx ′ and qz′ are related
to qx and qz by(

qx ′

qz′

)
=

(
cosα sin α

− sin α cosα

) (
qx

qz

)
. (8)

Using equation (7) with equation (6), we find the Fourier transform of Cp
jj (x, z) given by

C̃
p
jj (qx, qz) = 2(σ p

j )
2

q2
x ′ l

Re

[
(1 − P̃ (qx ′))(1 − H̃ (qz′))

1 − P̃ (qx ′)H̃ (qz′)

]
e−iqxLx e−q2

x τ
2
x (9)
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Figure 5. Observed (left-hand panels) and calculated (right-hand panels) diffuse intensity contours
around the third-order Bragg peaks in reciprocal space, (a) for sample 1 and (b) for sample 2. In
each of (a) and (b) the upper panels show the (qx, qz) maps while the lower panels show the (qy, qz)
maps.

where we have appended e−q2
x τ

2
x to account for the fluctuation of Lx around Lx . C̃

p
jj (qx, qz)

produces sharp peaks at qx = 2π/Lx because of the term e−iqxLx . The in-plane power spectral
density function is given by

C̃jj (qx, qz) = C̃
p
jj (qx, qx) + C̃r

jj (qx) (10)

where C̃r
jj (qx) is the Fourier transform of equation (4).
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Figure 6. The out-of-plane correlation inclined by angle θt off the mean-surface normal.

We now discuss the out-of-plane roughness correlation. Suppose point Aj and point Bk ,
separated by vector r(x, Z), are located on interfaces j and k at mean heights Zj and Zk

respectively (figure 7). To work out a practical form of the two-point correlation function
Cjk(x, Z), we shift interface j to the location of interface k so that the mean plane of the
shifted interface coincides with the one of interface k. The shift direction, indicated by vector
r′(= r′(x ′, Z′)) in figure 7, makes an angle θt to the Z axis. This translation moves point Aj

to point A′
j in figure 7. Cjk(x, Z) is given by

Cjk(x, Z) = Ijk(x − x ′, Z − Z′)δ(x ′ − |Zj − Zk| tan θt)δ(Z
′ − |Zj − Zk|) (11)

where Ijk(x −x ′, Z−Z′) is the ‘in-plane’ height–height correlation between shifted interface
j and interface k or between points A′

j and Bk separated by (x − x ′, Z −Z′). After Schromka
et al [12], we write Ijk(x, z) as

Ijk(x, z) = 1

2

[
σ

p
k

σ
p
j

C
p
jj (x, z) +

σ
p
j

σ
p
k

C
p
kk(x, z)

]
e−|Zj−Zk |/ξ p

z

+
1

2

[
σ r
k

σ r
j

Cr
jj (x) +

σ r
j

σ r
k

Cr
kk(x)

]
e−|Zj−Zk |/ξ r

z ≡ I
p
jk(x, z) + I r

jk(x) (12)

where ξ
p
z and ξ r

z are the cutoff lengths of the vertical correlations of the periodic and random
roughness, respectively. Equation (11) can be rewritten as

Cjk(x, Z) =
∫ +∞

−∞

∫ +∞

−∞
Ijk(x − x ′, Z − Z′)Ojk(x

′, Z′) dx ′ dZ′ (13)

where

Ojk(x, Z) = δ(x − |Zj − Zk| tan θt)δ(Z − |Zj − Zk|). (14)

Fourier transforming equation (13), we obtain the out-of-plane power spectral density function

C̃jk(qx, qz) = Ĩjk(qx, qz)Õjk(qx, qz) = 1
2 (Ĩ

p
jk(qx, qz) + Ĩ r

jk(qx)) e−iqx |Zj−Zk | tan θt e−iqz|Zj−Zk |

(15)

where equations (12) and (14) have been used. It is straightforward to derive the corresponding
formulae for the (qy, qz) plane.

We use the distorted-wave Born approximation (DWBA) method [8] to calculate the
differential cross section dσ/d& of x-ray scattering for rough interfaces. To solve the wave
equation for the scattering potential V = V (A) + V (B), we assume a semi-infinite medium of
uniform electron density with a flat surface for the undisturbed potential V (A) and a multilayer
structure with rough interfaces for the disturbance V (B). The diffuse part of the differential
cross section thus derived has a similar form to that obtained by as Holý et al [5], but the
two formulations use different correlation functions C(x, y, z). Our choice of the undisturbed
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Figure 7. To derive the roughness correlation between points Aj and Bk , interface j is shifted so
that the mean interface coincides with the one of interface k. The dotted curve shows the shifted
interface j .

system means that we do not take into account the diffuse scattering of the reflected waves or
the Bragg reflection of the diffusely scattered waves, as Holý et al pointed out [5].

Formula (12) means that the high-frequency fluctuations are as well correlated from one
interface to the next as low-frequency fluctuations. To impart a physically more desirable
property, we replace exp[−|Zj −Zk|/ξz] in (12) with exp[−|Zj −Zk|/ξz(1−q4

x/q
4
xc)], where

qxc is the qx value at the critical angle for total external reflection.

4. Data analysis

To fit the collected data, we make several simplifying assumptions:

(i) the Si and Si1−xGex layers are uniform in electron density and have equal thickness tSiGe

and tSi respectively, throughout a superlattice;
(ii) we assume exponential distributions for P(l) and H(h) [11];

(iii) all Si/Si1−xGex interfaces in a superlattice have random roughness of equal in-plane
correlation cutoff lengths ξ r

x and ξ r
y ;

(iv) both periodic and random structures in different interfaces are partially correlated with
cutoff lengths ξ

p
z and ξ r

z ;
(v) the random roughness has a fractal dimension 2.5, corresponding to hH = 0.5 (Hurst

parameter);
(vi) at the superlattice–substrate interface, the Si(111) surface has a bunched-step structure of

a 300 nm period in the in-plane direction.

hH = 0.5 is likely to be too small for MBE-grown films, but the hH value does not critically
affect the fit results. Assumption (vi) is based on [10], which refers to the structure of clean
vicinal Si(111) surfaces. To reduce the surface energy at room temperature, atomic steps on
the 1 × 1 surface are bunched together to form giant steps, separated by relatively flat 7 × 7
reconstructed terraces. The bunch size, i.e. the number of single-height steps included in a
bunch, is an insensitive function of the small miscut angle α and is reported to be about 10
[10]. This leads to the 300 nm bunch spacing for α = 0.6◦.

To account for the specular reflectivity peaks in figure 2, we assume Gaussian functions of
0.35 and 0.24 mrad in half-width for samples 1 and 2 respectively, which are used to convolute
the intrinsic profiles. These widths represent the combined effects of sample curvatures and
the angular width of the probing x-rays. The subsidiary diffuse peaks, shown by thick arrows
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in figure 3, are much broader, 2–3 mrad in half-width. To fit the peaks, we convoluted the
diffuse profiles given by equation (9) with a Lorentzian function

1

1 + q2
x (nxLx)2

or
1

1 + q2
y (nyLy)2

(16)

where nxLx and nyLy represent the coherent sizes in the x and y directions respectively.
For both x and y directions, we least-squares fitted the offset-specular and rocking-scan

profiles simultaneously. The results are shown by full curves in figures 2 and 3 and by grey-
scale maps in the right-hand panels of figure 5, with the determined structure parameters listed
in table 1. Lx , σ p

j , and σ r
j were independent free fitting parameters for the 19 layer interfaces:

our samples contain ten Si–Si1−xGex and nine Si1−xGex–Si interfaces. Lx was fixed at 300 nm
for the Si1−xGex–substrate interface. We have thus determined nineteen values for each of
Lx , σ p

j , and σ r
j . Table 1 shows the value ranges for these parameters over the 19 interfaces.

The mean period Lx of the step-terrace structures shows a small variation from one interface
to another in a superlattice, including the bottom Si–Si1−xGex interface immediately above
the substrate surface. It is likely that the stress-driven step redistribution took place during
the growth of the first Si1−xGex layer. In sample 2, the three times greater Ge content than in
sample 1 led to a drastic change in the step configuration: the densely bunched steps on the
substrate Si surface are widely dispersed at the first Si–Si0.7Ge0.3 interface. We discussed in
[4] the feasibility of such step redistributions in the presence of misfit stress. The change is
more moderate in sample 1, where the substrate step structure is essentially copied into the
superlattice. The fluctuation exponent τx , 64 nm for sample 1 and 260 nm for sample 2 in
table 1, represents the extent to which Lx varies around Lx in a superlattice. The greater τx
value for sample 2 is consistent with the vanishing higher-order harmonics of the diffuse peaks
in figures 3 and 5, while some harmonics are seen in sample 1.

Table 1. Structure parameters for the [Si–Si0.9Ge0.1]10 (sample 1) and [Si–Si0.7Ge0.3]10 (sample 2)
superlattices determined from the x-ray diffuse scattering data. For the symbols, see text. The
figures in parentheses show the standard deviations in the unit of the least-significant digit given.

Parameter Sample 1 Sample 2

tSi (nm) 4.54 (0.01) 4.20 (0.01)
tSiGe (nm) 4.20 (0.01) 4.20 (0.01)
Lx (nm) 375 (1)–385 (1) 1080 (1)–1110 (6)
τx (nm) 64 (7) 260 (40)
Ly (nm) 898 (40) >2000
τy (nm) 247 (40) 540 (60)

nx 1.71 0.80
ny 0.88 —

σ
p
sub (nm) 0.30 (5) 0.43 (1)

σ
p
j (nm) 0.77 (8)–1.23 (9) 0.69 (3)–1.26 (11)

ξ
p
z (nm) 195 (41) 200 (8)
σ r

sub (nm) 0.20 (6) 0.09 (1)
σ r
j (nm) 0.18 (1)–0.28 (5) 0.16 (3)–0.28 (7)

ξ r
x (nm) 21 (2) 50 (8)
ξ r
y (nm) 23 (1) 78 (14)
ξ r
z (nm) 38 (8) 98 (8)

θt (◦) 45 (20) 0 (2)
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Figure 8. Scheme showing a more extended terrace area for a greater σ p for a fixed Lx .

In contrast to Lx , the values obtained for σ
p
j and σ r

j show fluctuations greater than 50%
from one interface to another in table 1. This is due to the rougher Si1−xGex–Si interfaces
than the Si–Si1−xGex interfaces1 for given ξ r

x and ξ r
y . It is surprising that Lx is only slightly

different in the two types of interface.
Table 1 shows coherent lengths nxLx ≈ 650 nm and nyLy ≈ 800 nm for sample 1 and

nxLx ≈ 880 nm for sample 2. It is likely that the stepped interfaces are divided into domains
of these sizes along the x and y directions. The step positions in two different domains are
randomly out of phase. A further discussion will be given on this point in the next section.

In [4] we discussed the asymmetric diffuse-peak heights in the qx scans in terms of the
distinct areas of the up-hill and down-hill faces of the wavy interfaces seen by incoming x-rays
[13]. The σ

p
j values in table 1 allow us to estimate the relative face areas. With the terraces mak-

ing angle α to the mean interface plane, a greater σ p means more extended terraces for a given
Lx in the scattering configuration shown in figure 8, which is the one used in our experiment.
In sample 1 the terraces have a three times larger width than the step areas, whereas the terrace
width is 35–70% of that of the step areas in sample 2. The former value is consistent with
the AFM measurement that gives 2.6. The value 35–70% does not contradict the nearly equal
intensities of the diffuse peaks in the +qx and −qx regions observed in sample 2 (figure 3(b)).

The ξ
p
z values, 195 nm and 200 nm for samples 1 and 2 respectively, are greater than the

total superlattice thickness, indicating that the step-terrace structures are highly correlated in
different interfaces in the two samples. The random roughness is much less correlated than
the periodic structure: the ξ r

z values are less than one-half of ξ p
z in samples 1 and 2. The root

mean square σ r
j values of the random roughness are significantly smaller than σ

p
j , which is

consistent with the AFM observation (figure 4). As to the in-plane structure, the obtained ξ r
x

values are smaller than the mean terrace widths in samples 1 and 2. The slightly smaller ξ r
x

values than the ξ r
y values may indicate that the bunched steps interrupted the continuation of

the random structure. Our data analysis assumed a same out-of-plane correlation direction for
the periodic and random roughnesses. Table 1 shows that this direction makes a 45◦ angle to
the surface normal in sample 1, while it is parallel in sample 2.

5. Discussion

The formulae developed in this paper are useful in exploring the structure properties of stepped
interfaces in a multilayer using the x-ray diffuse scattering technique. Our formulae allow the
periodic and random roughnesses to be separately evaluated, which is not feasible with Holý
et al’s formulae [5]. We decomposed the interface roughness into the periodic and random com-
ponents to derive the power spectral density functions for interfaces associated with bunched
steps. We used a fractal model for the random component and the statistical distribution

1 Here notation A/B means that the layer in the left-hand position is closer to the multilayer surface than the layer
in the right-hand position.
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function given by Pukite et al [11] for the periodic component. This is in contrast to Holý et al
[5] who made no such decomposition but modelled the morphology of stepped interfaces by
terraces and steps with statistically distributed widths l and heights h. For samples including
bunched steps, the positions of subsidiary diffuse peaks in reciprocal space in the miscut di-
rection are dictated by Lx , but not by the mean terrace width (l), as is the case with Holý et al’s
formulation [5]. In the samples we investigated, l is ∼30 nm, whereas Lx is 380–1100 nm.

The calculated diffuse intensities fit generally well the experimental profiles in figure 3,
but the fit is poor around the Yoneda peaks in a few profiles. This appears to arise from
the excessive suppression of the scattering from the high-frequency fluctuations by the term
exp[−|Zj − Zk|/ξz(1 − q4

x/q
4
xc)] introduced in the correlation function Ijk(x, z), which

becomes zero at qx = qxc. The disagreement would not however significantly degrade the
quality of the structure parameter determined because x-ray penetration into the sample is
extremely shallow at such qx values.

The obtained nx values, 1.71 for sample 1 and 0.80 for sample 2, indicate that the periodic
bunched step-terrace structure is of short coherence along the miscut direction, with just one
or two periods included in a single domain. The ny = 0.88 for sample 1 indicates that the
domain size in the y direction is close to one wavelength of the step-edge meander in this
sample. The two-dimensional AFM images reproduced in the previous papers [3, 4] clearly
show the step meanders. The small domain size in the y direction appears to arise from the
fact that the miscut direction is 10◦ off the [211] direction.

In [4] we gave an extended thermodynamic discussion favouring the stress-driven
redistribution of the existing steps at the vicinal substrate surface when replicated into the
Si–Si0.7Ge0.3 multilayer. X-ray scattering or AFM data from the original Si surfaces before
the superlattice deposition would support the discussion, but unfortunately these data are
unavailable. The quite different interface structures in Si–Si0.9Ge0.1 and Si–Si0.7Ge0.3 are now
evidenced by the good agreement of the calculated diffuse x-ray scattering with the observation.
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[7] Holý V and Baumbach T 1994 Phys. Rev. B 49 10 668
[8] Sinha S K, Sirota E B, Garoff S and Stanley H B 1988 Phys. Rev. B 38 2297
[9] Phaneuf R J, Williams E D and Bartelt N C 1988 Phys. Rev. B 38 1984

[10] Swartzentruber B S, Mo Y W, Webbs M B and Lagally M G 1989 J. Vac. Sci. Technol. A 7 2901
[11] Pukite P R, Lent C S and Cohen P I 1985 Surf. Sci. 161 39
[12] Schromka J P, Tolan M, Schwalowsky L, Seeck O H, Stettner J and Press W 1995 Phys. Rev. B 51 2311
[13] Phang Y H, Teichert C, Lagally M G, Peticolos L J, Bean J C and Kasper E 1994 Phys. Rev. B 50 14 435


